苏润凡,廖爱华,胡定玉,师 蔚,高伟民,丁亚琦.基于小波旁瓣相消器的轴承故障特征提取[J].测控技术,2022,41(12):29-35
基于小波旁瓣相消器的轴承故障特征提取
Bearing Fault Feature Extraction Based on Wavelet Generalized Sidelobe Canceller
  
DOI:10.19708/j.ckjs.2022.02.227
中文关键词:  轴承故障诊断  声学诊断  小波滤波器组  波束形成  旁瓣相消技术
英文关键词:bearing fault diagnosis  acoustic diagnosis  wavelet filter bank  beam forming  generalized sidelobe canceller technology
基金项目:国家自然科学基金青年科学基金项目(51605274);上海市地方院校能力建设项目(20030501000)
作者单位
苏润凡 上海工程技术大学 城市轨道交通学院 
廖爱华 上海工程技术大学 城市轨道交通学院 上海市轨道交通振动与噪声控制技术工程研究中心 
胡定玉 上海工程技术大学 城市轨道交通学院 上海市轨道交通振动与噪声控制技术工程研究中心 
师 蔚 上海工程技术大学 城市轨道交通学院 上海市轨道交通振动与噪声控制技术工程研究中心 
高伟民 上海地铁维护保障有限公司 车辆分公司 
丁亚琦 上海地铁维护保障有限公司 车辆分公司 
摘要点击次数: 53
全文下载次数: 67
中文摘要:
      为解决强背景噪声下声信号提取的轴承故障特征不显著问题,提出一种基于小波旁瓣相消器的故障特征提取方法。该方法利用小波滤波器组将含噪故障轴承声信号变换到小波域,进行小波域阵列广义旁瓣相消自适应波束形成,再通过小波滤波器组重构增强后的故障轴承信号,最后对重构增强后的信号进行包络解调并提取故障特征频率进行故障诊断。实验结果表明,该方法能够在强背景噪声下有效提取滚动轴承故障特征,并且相较于传统的延时求和波束形成器具有更好的降噪和故障特征增强效果。
英文摘要:
      In order to solve the problem of insignificant bearing fault features extracted from acoustic signals under strong background noise,a fault feature extraction method based on wavelet beamforming is proposed.This method uses a wavelet filter bank to transform the acoustic signal of a noisy faulty bearing into the wavelet domain and performs an array of wavelet domain generalized sidelobe cancellation adaptive beamforming,and then reconstructs the enhanced fault through the wavelet filter bank bearing acoustic signal,and finally envelops demodulation of the reconstructed and enhanced signal and extract the fault characteristic frequency for fault diagnosis.The experimental results show that the method can effectively extract the fault features of rolling bearings under strong background noise,and has better noise reduction and fault feature enhancement effects than the traditional time-delay summation beamformer.
查看全文  查看/发表评论  下载PDF阅读器
关闭