刘志荣,姜树海,袁雯雯,史晨辉.基于深度Q学习的移动机器人路径规划[J].测控技术,2019,38(7):24-28
基于深度Q学习的移动机器人路径规划
Robot Path Planning Based on Deep Q-Learning
  
DOI:10.19708/j.ckjs.2018.00.002
中文关键词:  Q-learning  深度Q学习  移动机器人  路径规划
英文关键词:Q-learning  deep Q-learning  mobile robot  path planning
基金项目:国家公益性行业科研专项重大项目(201404402-03);江苏省研究生科研创新计划项目(KYCX17_0865)
作者单位
刘志荣 南京林业大学 机械电子工程学院 南京林业大学 智能控制与机器人技术研究所 
姜树海 南京林业大学 机械电子工程学院 南京林业大学 智能控制与机器人技术研究所 
袁雯雯 南京林业大学 机械电子工程学院 南京林业大学 智能控制与机器人技术研究所 
史晨辉 南京林业大学 机械电子工程学院 南京林业大学 智能控制与机器人技术研究所 
摘要点击次数: 232
全文下载次数: 142
中文摘要:
      针对传统Q-learning算法在复杂环境下移动机器人路径规划问题中容易产生维数灾难的问题,提出一种改进方法。该方法将深度学习融于Q-learning框架中,以网络输出代替Q值表,解决维数灾难问题。通过构建记忆回放矩阵和双层网络结构打断数据相关性,提高算法收敛性。最后,通过栅格法建立仿真环境建模,在不同复杂程度上的地图上进行仿真实验,对比实验验证了传统Q-learning难以在大状态空间下进行路径规划,深度强化学习能够在复杂状态环境下进行良好的路径规划。
英文摘要:
      In order to solve the problem that the traditional Q-learning algorithm is prone to dimension disaster in the path planning of mobile robot in complex environment,an improved method is proposed.This method integrates deep learning into the Q-learning framework and replaces the Q-value table with network output to solve the dimensionality disaster problem.In addition,by constructing a memory playback matrix and a two-layer network structure,data correlation is interrupted to improve the convergence of the algorithm.Finally,the simulation environment modeling is established by grid method,and simulation experiments are carried out on multiple maps with different complexity levels.The comparison experiments verify that traditional Q-learning is difficult to perform good path planning in large state space,and deep Q-learning enables good path planning in complex state environments.
查看全文  查看/发表评论  下载PDF阅读器
关闭