兰宇飞,薛惠锋,柳丹.融合小波与2DPCA的SVM人脸识别[J].测控技术,2010,29(5):36-39 |
融合小波与2DPCA的SVM人脸识别 |
SVM Face Recognition Using Wavelet Transform and 2DPCA |
|
DOI: |
中文关键词: 人脸识别 小波变换 二维主元分析 支持向量机 |
英文关键词:face recognition wavelet transform two-dimensional principal component analysis(2DPCA) support vector machine(SVM) |
基金项目: |
兰宇飞 薛惠锋 柳丹 |
西北工业大学,自动化学院,陕西,西安,710129? |
摘要点击次数: 1199 |
全文下载次数: 1034 |
中文摘要: |
近年来,人脸识别由于其诱人的应用前景再次成为模式识别领域的研究热点。分析了小波变换、2DPCA以及SVM 3种方法在人脸识别中各自的优势,提出了融合小波和2DPCA进行SVM人脸识别的方法。首先对原始图像采用小波分解提取低频信息,忽略高频分量;然后利用2DPCA进行特征提取;最后把降维后的数据输入SVM进行分类识别。该方法在ORL、Yale人脸库上的实验表明,与传统的方法相比,不但可以提高识别率,而且所用时间明显减少。 |
英文摘要: |
In recent years, face recognition becomes a hot field of pattern recognition once again because of its attractive prospect.The respective advantages of wavelet transform,2DPCA and SVM is analyzed in face recognition,and a SVM approach to face recognition is proposed based on wavelet transform and 2DPCA.Firstly,the original images are decomposed into low frequency images by applying wavelet transform and ignored the high frequency components.Then 2DPCA is used to deal with feature extraction.At last,SVM is made use of the feature to do classification.Its efficiency and superiority are clarified by comparative experiments on ORL and Yale face data. |
查看全文 查看/发表评论 下载PDF阅读器 |
关闭 |
|
|
|