王希花,郭洪杰,黄威.基于改进型DCT和Gabor分块的人脸特征提取与识别[J].测控技术,2012,31(12):36-40 |
基于改进型DCT和Gabor分块的人脸特征提取与识别 |
Face Feature Extraction and Recognition Based on Modified Discrete Cosine Transform and Gabor Block |
|
DOI: |
中文关键词: 特征提取 DCT Gabor小波 分块统计 感知器 |
英文关键词:feature extraction DCT Gabor wavelet block statistics perception |
基金项目:江苏省“六大人才”高峰高层次人才资助项目(2010-JXQC-132);教育部留学回国人员科研启动基金资助项目(教外司留[2010]609号);江苏省高校“青蓝工程”中青年学术带头人基金资助项目(20101005) |
|
摘要点击次数: 1440 |
全文下载次数: 36 |
中文摘要: |
人脸特征提取是人脸识别中重要的一个环节。提出了一种新的方法,利用DCT对人脸图像压缩降维,然后对DCT系数用20组Gabor小波滤波,滤波后的结果采用选择性分块统计方法提取特征向量。最后把特征向量用改进型感知器算法进行分类。以VC++6.0为开发平台在Yale人脸库和ORL人脸库上对该方法进行了测试。实验表明,该方法与常用的PCA、LDA等特征提取方法相比可以有效降低运算时间,并提高识别率。 |
英文摘要: |
Face feature extraction is an important part of face recognition.A new method is presented which uses discrete cosine transform(DCT) for face images compression and dimension reduction,then the DCT coefficients is filtered by using 20 groups of Gabor wavelet,the selective block statistics method is used to extract eigenvectors from the result of filtering.Finally,the eigenvectors with modified perception algorithm are classified.It is tested on the Yale face database and ORL face database with VC++6.0.Experiment shows that compared with the commonly used feature extraction methods such as PCA and LDA,the new method can reduce the calculation and increase the identification effectively. |
查看全文 查看/发表评论 下载PDF阅读器 |
关闭 |