杨志飞,严天峰,蔺鹏臻.基于短时LS-SVM的GNSS铁路路基沉降监测数据分析研究[J].测控技术,2018,37(2):55-58
基于短时LS-SVM的GNSS铁路路基沉降监测数据分析研究
Analysis and Research on GNSS Monitoring Data of Railway Subgrade Settlement Based on Short Time LS-SVM
  
DOI:
中文关键词:  全球导航定位系统(GNSS)  路基沉降  最小二乘支持向量机  预测
英文关键词:GNSS  subgrade settlement  LS-SVM  prediction
基金项目:甘肃省自然基金资助项目(1508RJZA071);甘肃省教育厅省级计划项目(2017C09);兰州交通大学校青年基金资助项目(2015008)
作者单位
杨志飞 兰州交通大学 电子与信息工程学院 
严天峰 兰州交通大学 电子与信息工程学院 
蔺鹏臻 兰州交通大学 土木工程学院 
摘要点击次数: 1181
全文下载次数: 1125
中文摘要:
      在GNSS(全球导航卫星系统)铁路路基沉降监测中,卫星信号受到周围环境的影响,同时实时监测中数据传输的不可靠性,导致监测结果往往有很强的不稳定性,有效地剔除粗差能提高GNSS监测的可靠性。鉴于最小二乘支持向量机有很强的非线性运算能力与数据拟合能力,建立短时最小二乘支持向量机铁路沉降数据预测模型,在监测中融合该模型,提高监测的有效性。分别运算该模型对山西中南部铁路通道重载综合试验地的3个监测点进行了分析处理,结果表明融合短时最小二乘支持向量机的预测模型有效抑制了GNSS监测中的离散误差,提高了GNSS监测系统的可靠性与稳定性,为铁路路基沉降监测提供了更为有效的手段。
英文摘要:
      In the global navigation satellite system(GNSS) railway subgrade settlement monitoring,the satellite signal is affected by the surrounding environment,and the data transmission is not reliable in real-time monitoring,which results in strong instability of monitoring results.Effective eliminating gross errors can improve the reliability of GNSS monitoring.Least squares support vector machine(LS-SVM) has strong nonlinear computing ability and data fitting ability.The prediction model based on the short-time LS-SVM railway subsidence data was established,the effectiveness of monitoring was improved by integrating the model.The model was used to analyze three monitoring points of railway channel load respectively located in southern Shanxi,the results show that the prediction model fused short-time LS-SVM can effectively suppress the discrete errors in the GNSS monitoring and improve the reliability and stability of GNSS monitoring system,which provides a more effective means for railway subgrade settlement monitoring.
查看全文  查看/发表评论  下载PDF阅读器
关闭