朱海振,肖明清,祁业兴,李超.基于改进GA-PSO的可重构测试资源匹配方法[J].测控技术,2018,37(6):24-28 |
基于改进GA-PSO的可重构测试资源匹配方法 |
Reconfigurable Test Resource Matching Method Based on Improved Genetic-Particle Swarm Optimization Algorithm |
|
DOI:10.19708/j.ckjs.2018.06.005 |
中文关键词: 可重构 测试资源 信号模型 匹配函数 遗传-粒子群算法 |
英文关键词:reconfiguration test resource signal model matching function GA-PSO algorithm |
基金项目: |
|
摘要点击次数: 1042 |
全文下载次数: 526 |
中文摘要: |
为提高测点信号与可重构测试资源匹配效率,建立了基于STD标准的测点信号与可重构测试资源的数学描述模型。针对可重构测试资源的特点,结合工程实际提出了基于Sigmoid函数的匹配函数,以资源可靠性、配置文件大小及配置时间因子作为罚函数,利用匹配函数构造出遗传算法的适应度函数。为解决遗传算法搜索速度较慢的问题,改进了遗传算法的选择算子和交叉算子,将粒子群算法应用到遗传算法中,解决了遗传算法在算法后期迭代效率低下的问题,最后通过实例验证了算法的有效性。 |
英文摘要: |
In order to improve the matching efficiency between test point signal and reconfigurable test resource,a mathematical description model based on STD standard for test point signal and reconfigurable test resource is established.According to the characteristics of reconfigurable test resources,a matching function based on Sigmoid function was proposed in combination with engineering practice.Additionally,the fitness function of the genetic algorithm was constructed by using the matching function,taking the reliability of the resource,the size of the configuration file and the time factor as penalty function.The selection operator and crossover operator of genetic algorithm were improved to tackle the problem of slow search speed of genetic algorithm,the particle swarm algorithm is applied to the genetic algorithm,which solves the problem of the low iterative efficiency of genetic algorithm in the late algorithm.Finally,the validity of the algorithm is verified by an example. |
查看全文 查看/发表评论 下载PDF阅读器 |
关闭 |