曾 琦,肖红光.基于半监督深度生成对抗网络的图像识别方法[J].测控技术,2019,38(8):37-42
基于半监督深度生成对抗网络的图像识别方法
Image Recognition Based on Semi Supervised Deep Convolutional Generative Adversarial Networks
  
DOI:10.19708/j.ckjs.2019.08.008
中文关键词:  生成对抗网络  半监督  深度卷积网络  图像识别
英文关键词:GAN  semi supervised  deep convolutional networks  image recognition
基金项目:国家自然科学基金青年科学基金项目(41201468);国家公益性行业科研专项(201510003-5)
作者单位
曾 琦 长沙理工大学 计算机与通信工程学院 
肖红光 长沙理工大学 计算机与通信工程学院 
摘要点击次数: 868
全文下载次数: 398
中文摘要:
      基于生成对抗网络的图像识别方法拥有很高的识别率,但训练时需要大量有标签样本,在有标签样本较少的情况时识别效果不佳。针对这个问题,结合深度卷积生成对抗网络和半监督生成对抗网络的特点建立半监督深度生成对抗网络。根据有标签样本和无标签样本分布,模型生成拟合真实分布的样本输入并训练分类器,增加了训练样本数从而提升识别率。将模型优化调整并进行图像识别实验,结果表明,该方法仅用少量有标签样本即可实现准确的图像识别。
英文摘要:
      The image recognition method based on GAN(generative adversarial networks) has a high recognition rate,but a large number of labeled samples are needed for training.Therefore,when the number of labeled samples is small,the performance of this method is poor.In order to solve this problem,a SS-DCGAN(semi supervised deep convolutional generative adversarial networks) is established,which combines the characteristics of DCGAN(deep convolutional generative adversarial networks) and SSGAN(semi supervised generative adversarial networks).According to the distribution of labeled samples and unlabeled samples,the model generates samples that fit the real data distribution and trains the classifier,and increases the number of training samples to improve the recognition rate.The model was optimized,and the experiments of image recognition were carried out.The results show that the method can realize accurate image recognition with only a small number of labeled samples.
查看全文  查看/发表评论  下载PDF阅读器
关闭