李 刚,刘佳林,王腾飞,丁 坤.基于相似日理论和IPSO-Elman模型的短期光伏发电功率预测[J].测控技术,2020,39(2):91-97 |
基于相似日理论和IPSO-Elman模型的短期光伏发电功率预测 |
Short-Term Photovoltaic Power Forecast Based on Similar Day Theory and IPSO-Elman Model |
|
DOI:10.19708/j.ckjs.2020.02.016 |
中文关键词: 光伏发电 功率预测 粒子群优化(PSO)算法 Elman神经网络 相似日理论 |
英文关键词:photovoltaic power forecast particle swarm optimization(PSO) algorithm Elman neural network similar day theory |
基金项目:甘肃省科技支撑计划项目(1604GKCA007) |
|
摘要点击次数: 1121 |
全文下载次数: 413 |
中文摘要: |
为提高光伏发电功率预测精度,提出一种基于相似日理论和改进的IPSO-Elman神经网络模型的短期光伏发电功率预测方法。将历史数据细分为不同季节不同天气类型的多个子集,通过灰色关联度和余弦相似度组合而成的综合关联度指标筛选相似日。针对标准粒子群算法的缺陷,提出一种改进的自适应混沌变异粒子群算法(IPSO)来优化Elman神经网络,将优化得出的最优权值和阈值作为初始值建立IPSO-Elman神经网络模型,对3种不同季节和天气类型条件下的光伏发电功率分别预测。选用甘肃省某光伏电站2014年数据进行实例分析,结果表明,IPSO-Elman模型在不同天气类型条件下的功率预测效果都有明显提高。 |
英文摘要: |
In order to improve the accuracy of photovoltaic power generation prediction,a short-term photovoltaic power generation prediction method based on similar day theory and improved IPSO-Elman neural network model is proposed.The historical data is subdivided into multiple subsets of different weather types in different seasons,and the comprehensive correlation degree index that is combined gray correlation degree and cosine similarity is used to screen similarity day.In order to eliminate the defects of the standard particle swarm optimization (PSO) algorithm,an improved particle swarm optimization (IPSO) algorithm with adaptive chaotic mutation was proposed to optimize the Elman neural network.The optimal weights and thresholds were used as initial values to establish the IPSO-Elman neural network model to separately predicte photovoltaic power generation under three different seasons and weather conditions.Based on the analysis of photovoltaic power plant in Gansu Province in 2014,the results show that compared with the Elman model and the PSO-Elman model,the IPSO-Elman model has better prediction effects under different weather types. |
查看全文 查看/发表评论 下载PDF阅读器 |
关闭 |