杨娟娟,高晓阳,邵世禄,李红岭,尹国强.基于卷积神经网络的葡萄叶片氮含量识别方法[J].测控技术,2020,39(2):121-125
基于卷积神经网络的葡萄叶片氮含量识别方法
Identification Method of Nitrogen Content in Grape Leaves Based on Convolutional Neural Network
  
DOI:10.19708/j.ckjs.2020.02.021
中文关键词:  卷积神经网络  葡萄  图像识别  深度学习
英文关键词:convolutional neural network  grape  image recognition  deep learning
基金项目:
作者单位
杨娟娟 甘肃农业大学 机电工程学院 甘肃葡萄与葡萄酒工程学重点实验室 甘肃省干旱生境作物学重点实验室 
高晓阳 甘肃农业大学 机电工程学院 甘肃葡萄与葡萄酒工程学重点实验室 甘肃省干旱生境作物学重点实验室 
邵世禄 甘肃农业大学 机电工程学院 甘肃葡萄与葡萄酒工程学重点实验室 甘肃省干旱生境作物学重点实验室 
李红岭 甘肃农业大学 机电工程学院 甘肃葡萄与葡萄酒工程学重点实验室 甘肃省干旱生境作物学重点实验室 
尹国强 甘肃农业大学 机电工程学院 甘肃葡萄与葡萄酒工程学重点实验室 甘肃省干旱生境作物学重点实验室 
摘要点击次数: 754
全文下载次数: 400
中文摘要:
      为实现对葡萄叶片氮素含量快速、便捷的识别,在卷积神经网络VGG-16网络结构基础上,将数据增广后的图像按不同梯度划分进行模型训练,通过十折交叉验证法探究最佳的训练集与验证集分配比例,并构建4个不同深度的网络模型进行训练对比,采用全局平均池化代替全连接层约简网络参数量。训练结果表明,氮含量梯度设为0.70%、0.35%和0.175%时,室内简单背景识别准确率分别为85.9%、76.2%和71.1%;晴天室外复杂背景下识别准确率分别为44.6%、35.0%和30.4%。研究结果表明利用VGG-16建立的网络学习模型对葡萄叶片氮含量识别提供了一种新的便捷方法,对农业信息化和智能化技术应用具有一定促进作用。
英文摘要:
      In order to rapidly and conveniently identify the nitrogen content in grape leaves,based on the VGG-16 network structure,the images are divided into four different gradients for model training.Then the training set and the verification set are divided into four ratio combinations to construct four different depths network models.Simultaneously,the global average pooling is used to instead the full connectivity layer.The training results show that when the nitrogen content gradients is 0.70%,0.35% and 0.175%,the average recognition accuracy under simple indoor background is 85.9%,76.2% and 71.1%,respectively,and the outdoor background in 44.6%,35.0% and 30.4%.The research results show that the model can identify the nitrogen content in grape leaves,which has certain promotion to the application of agricultural information and intelligent technology.
查看全文  查看/发表评论  下载PDF阅读器
关闭