陆钦华,陈嘉宇,王旭航,葛红娟.数据不平衡故障诊断:一种预训练数据增强方法[J].测控技术,2025,44(1):10-21
数据不平衡故障诊断:一种预训练数据增强方法
Fault Diagnosis for Imbalanced Data:a Pre-Trained Data Enhancement Method
  
DOI:10.19708/j.ckjs.2024.11.267
中文关键词:  航空发动机  样本生成  数据稀缺性  数据不平衡  生成对抗网络
英文关键词:aeroengine  sample generation  data scarcity  data imbalance  GAN
基金项目:国家自然科学基金(52102474,U2233205);中国博士后科学基金面上项目(2023M731663);中央高校基本科研业务费(XCXJH20230744)
作者单位
陆钦华 南京航空航天大学 民航学院 
陈嘉宇 南京航空航天大学 民航学院 
王旭航 南京航空航天大学 民航学院 
葛红娟 南京航空航天大学 民航学院 
摘要点击次数: 55
全文下载次数: 56
中文摘要:
      针对实际航空发动机滚动轴承故障诊断应用中健康-故障数据不平衡的问题,提出一种结合梯度惩罚与辅助分类器的Wasserstein生成对抗网络(Wasserstein Generative Adversarial Network Gradiend Penalty,WGANGP)的增强诊断方法——预训练数据增强-WGANGP(PDA-WGANGP)。首先,模拟实际情况,利用健康数据和少量故障数据对网络进行预训练;其次,将训练好的网络结构和参数作为判别器和分类器的前端特征提取层;最后,通过引入残差网络,构建一个全新的生成器,从而稳定地生成高品质的故障样本,平衡测试数据集,完成网络结构的优化训练。通过对滚动轴承开展不平衡数据下的诊断应用与验证,证明了PDA-WGANGP在样本生成和高效诊断中的可行性,以及相较于同类方法的诊断性能优越性。
英文摘要:
      To solve the problem of health-fault data imbalance in the real applications of aeroengine rolling bearing fault diagnosis,a rolling bearing enhanced diagnosis method combining gradient punishment and auxiliary classifier Wasserstein generative adversarial network(WGANGP) is proposed:pre-trained data augment-WGANGP (PDA-WGANGP).Firstly,the actual situation is simulated,and the network is pre-trained by using health data and a small amount of fault data.Secondly,the trained network structure and parameters are used as the front-end feature extraction layer of discriminator and classifier.Finally,a new generator is constructed by introducing the residual network,so as to stably generate high-quality fault samples,balance the test data set,and complete the optimization training of network structure.Through the diagnostic application and verification of rolling bearing under imbalanced data,it is proved that PDA-WGANGP is feasible in sample generation and diagnosis,and its performance is superior to other widely used methods.
查看全文  查看/发表评论  下载PDF阅读器
关闭